
Introduction of DIPS Programming Technique
Chikashi Miyama1, Takayuki Rai1, Shu Matsuda2, Daichi Ando3

1Sonology Department, Kunitachi College of Music
2Digital Art Creation

3Chalmers University of Technology
email: rai@kcm-sd.ac.jp and shu@dacreation.com

Abstract

DIPS, (Digital Image Processing with Sound), is a
set of Max objects that handle real-time visual image
processing events and OpenGL functions in the jMax
GUI programming environment. In this paper we
introduce DIPS programming techniques and pro-
gramming strategies for interactive multimedia art.
DIPS for Linux and Mac OS X has been released
under GPL and can be downloaded from
http://dacreation.com/dips.html.

1. Introduction

DIPS consists of more than a hundred OpenGL
functions, various video effect objects, QuickTime
objects, 3D model handling objects, movie handling
objects, image file handling objects, etc. Since it was
developed as a tool for using OpenGL in a flexible
real-time environment, knowledge of OpenGL is es-
sential. However, just as Max offers complex pro-
gramming opportunities for people who do not neces-
sarily have programming skills, DIPS was also de-
signed for composers and creators with an aim to
exploiting graphical calculations and realizing inter-
action between sound and visual events.

2. DIPS programming

Most DIPS objects are bang oriented, meaning that
calculations are executed only when an object re-
ceives a bang in its left-most inlet. In this way we can
control the rendering interval and avoid unnecessary
calculations, thus saving machine-processing power,
since slower machines can be used with a slower
bang-rate (i.e. metro speed). A second type of DIPS
object does not require any bang. For instance, the
DIPSWindow object creates a rendering window
right after the object is instantiated.

A) Initialization procedure
We first create a window where various 3D ob-

jects and images will be rendered. Normally the fol-
lowing initialization procedure consisting of six steps
is used to create the window. (Fig.1).
1) DIPSWindow : With this object we can specify
name, size in pixels, and the position of the window
on the desktop. For a TV-sized monitor display the
size of 640 by 480 is appropriate. In example-1

we create a 320 by 240 pixel window at the position
50 and 50 (x, y from top-left position of the desktop)
with the name “sampleWindow”.
2) DIPSSetCurrentWindow : With this object we
specify the current target window.
3) DGLClearColor : This specifies clear values
(RGB each range [0, 1]) for the color buffer. In this
case, we specify the background color of the window.
This process can be executed together with the object
“DGLClear”.
4) DGLMatrixMode : This determines the current
matrix. Here we set it to “GL_PROJECTION” matrix
stack temporarily.
5) DGLLoadIdentity : This sets the current matrix
with an initial value (identity matrix).

Fig.1 : example-1

6) DGLOrtho : This produces a parallel projection,
the orthographical 3D space that is defined with val-
ues: left/right on the x-axis, bottom/top on the y-axis,
and near/far on the z-axis. These values set the scale
of three-dimensional space.

A perspective projection can be produced using
the “DGLFrustum” or “DGLUPerspective” objects.
(Fig.2).

Fig.2 : DGLFrustrum

7) DGLMatrixMode : We set the matrix to
“GL_MODELVIEW”.
8) DGLLoadIdenttity : The current matrix is set
with an initial value.
9) DGLClear : This clears the specified buffer. In
this case we clear the color buffer
(“GL_COLOR_BUFFER_BIT”) and set new values
defined by the previous “DGLClearColor”.
10) DIPSSwapBuffer : Finally the result of the
above process is rendered in the specified window
using a swap buffer function.

In most situations, DIPS objects are programmed
between the last “DGLMatrixMode” and
“DIPSSwapBuffer”. Here we created just an empty
black window. Also in this example the object
“DGLViewPort” is omitted. It defines the rendering
rectangular or square region in the window in the
case where the user wishes to render in an area
smaller than the entire window.

B) Drawing a simple polygon
Usually 3D models in computer graphics consist

of a large number of vertices, and each group of a few
vertices forms a polygon surface. Thus 3D models
consist of a large number of polygon surfaces. In the
following example we draw a simple triangular sur-
face in our “sampleWindow”. (Fig.3). All objects
introduced in this example must be placed between
the “DGLClear” and “DGLSwapBuffer” objects.
1) DGLColor : This object simply defines the color
(RGB) of the object or vertex. In this example, the
color parameters are set to [0. 0. 1.], so that a blue
triangular surface is rendered in the window. To cre-
ate several different colored objects we have to speci-
fy the color value with “DGLColor” before each tar-
get DIPS object.
2) DGLBegin and DGLEnd : Here with the argu-
ment “GL_POLYGON” we declare a polygon with
vertices. (In “DGLBegin” we can specify
“GL_LINES_STRIP” to draw a line, or
“GL_QUADS” to draw a quadrangle, etc.) To close
this instruction we must place a “DGLEnd” object at
the end of the sequence.

Fig.3 : example-2

3) DGLVertex2 and DGLVertex3 : There are two
DIPS GL objects to specify vertices. “DGLVertex3”
defines vertices in three dimensions (x, y, z), and
“DGLVertex2” does in two dimensions (x, y) where
the z-axis value is automatically set to zero.

C) Creating a 3D model with the DGLUT object
We can also create a 3D model with DIPS GLUT

objects, which are wrapper objects of the OpenGL
Utility Toolkit. These DGLUT objects allow us to
create simple geometric models with just one instruc-
tion. Geometric models that can be created with
DGLUT objects include Cone, Cube, Dodecahedron,
Icosahedron, Octahedron, Sphere, Teapot, Tetrahe-
dron and Torus. They can be rendered in Wire or
Solid form. (Fig.4).

Fig.4 : DGLUTWireTorus

D) Translating a model object
To translate, to change the size, and to rotate an

object, we use the following three DIPS GL objects.
1) DGLTranslate : This object moves the position of
the model on the x, y, and z-axis. The values of pa-
rameters for this object depend on the scale value that
is defined in the “DGLOrtho”, “DGLFrustum”, or
“DGLUPerspective” object beforehand.

Fig.5 : example-3

2) DGLRotate : For rotating the model we use this
DGL object. The last three arguments, x, y, and z
coordinates of a vector, determine the axis for the
rotation. The first argument specifies the angle in
degrees to rotate. For example, when we wish to ro-
tate the model 30 degrees on the y-axis we set the
object’s arguments to the following: “DGLRotate 30
0. 1. 0.”.

3) DGLScale : This object reduces and extends the
size of the model on the x, y, and z-axis.

These three objects are usually placed just before
the specification of a target model DIPS object, such
as “DGLBegin”, “DGLUT”, etc. In Fig.5, a jMax
number box and a jMax slider object are connected to
the second inlet (x-axis) of a “DGLTranslate” object.
By dragging the slider value with the mouse you can
translate the position of the Torus, specified by
“DGLUTSolidTorus”, on the x-axis.
To translate several models individually, in most of
cases we recommend using “DGLPushMatrix” and
“DGLPopMatrix” objects. Each target model DIPS
object must be placed in between these two objects.
A “DGLPushMatrix” object pushes the current ma-
trix value and keeps it in the matrix stack. Conversely,
“DGLPopMatrix” throws away the current matrix
value and goes back one before in the matrix stack.

E) Setting light and material
We can specify lighting effects and features of sur-

face material of the model.
1) DGLEnable and DGLDisable : Before we speci-
fy lighting effects, we have to enable OpenGL light-
ing calculations using the “DGLEnable” object. With
this and the “DGLDisable” object we can turn on and
off various OpenGL calculations. In this example
(Fig.6), first we enable “GL_LIGHTING” calcula-
tions, and then we turn on “GL_LIGHT0” (the “num-
ber zero light”). The number of lights we can use
depends on the hardware environment, but we have
found that one can use at least eight lights in a mini-
mal environment.
2) DGLLight : With this object we can chose one of
ten different sorts of lights and also define its color
(RGBA=Alpha). The first argument specifies the
light to use, in the example, “GL_LIGHT0”.
3) DGLMaterial : This object defines the quality of
materials on the face of the model. We can specify
one of four material modes: “GL_AMBIENT”,
“GL_DIFFUSE”, “GL_SPECULAR”,
“GL_EMISSION”.

Fig.6 : example-4

We can also decide its RGBA parameters for each
mode. How the face of the model looks is the result
of the combination of specified light and material. In

the example, the material is set to red and the light is
blue, making the model appear purple. (Fig. 6).

F) Texture mapping
Texture mapping is a well-known and useful tech-

nique in computer graphics that allows artificial ob-
jects to appear more complex and more vivid. We
can glue a two dimensional image to a polygon
(Fig.7). Texture mapping calculations can be enabled
when “DGLEnable GL_TEXTURE_2D” is executed.

Fig.7: texture mapped rectangles

1) DIPSPixTable : This object loads various kinds of
movie and image files which QuickTime support.
First, we specify the name of a pixel table, then the
width and height of a movie or image file, the number
of frames in the case of movie file, and the search-
path or URL of the source file. (Images and movies
can be loaded via the Internet.) The width and height
of the texture must be a power of two. The source
image will be resized according to the specified tex-
ture size.
2) DGLTexImage2D : This determines which
“DGLPixTable” will be attached to the polygon sur-
face as a texture.

Fig.8 : example-5

3) DGLTexCoord2 : A position (x and y, each with
range [0, 1]) in the image is attached on a vertex of
the model defined by a “DGLVertex3” object. (Fig.8).
If we are working with a movie file or stored sequen-
tial images, we must specify the current image with

its frame number using the “DIPSMakeCurrentTable”
object. Its first argument is the name of a DIPSPix-
Table, and the second is the frame number. Frame
numbers can be continuously changed at the right
inlet of the “DIPSMakeCurrentTable” object. Thus,
we can play the movie at any speed, forward or
backward, etc.

G) DIPSVideoIn :
This object handles video input images from a

digital video camera, so that incoming video images
can be brought into a DIPS patch. (Fig.9). It refreshes
or captures video input when it receives a bang. The
input can be transformed with various DIPS pixel
calculation (DPX) objects, it can be analyzed, or it
can be used as moving texture. (Fig.10). Currently
only a single Firewire (IEEE1394) camera input is
supported.

Fig.9 : DIPSVideoIn

Fig.10: in-coming video signal used as a video texture

3. Conclusion

In this paper we have introduced basic DIPS
programming techniques. The DIPS objects we have
briefly described are fundamental objects. There are
many more DIPS objects available, along with online
help. The DIPS distribution includes a large number
of DIPS patch examples (Fig.11), and tutorial patches.
In addition we include supporting tools for program-
mers interested in writing DIPS external objects.

Fig.11 : DIPS patch example

Future plans include porting DIPS to the new
jMax4 environment, while continuing to enhance
pixel calculation and motion detection objects.

4. Acknowledgements

We would like to thank the real-time group at IR-
CAM for their support.

Reference

[1] Matsuda, S., Miyama, C., Ando, D., Sakai, Y.,
“DIPS2: a multimedia programming environment
on jMax”, 2003-MUS-51, 2003.

[2] Matsuda, S., Miyama, C., Ando, D., “DIPS for
Linux and Mac OS X”, 2002-MUS-48, 2002.

[3] Matsuda, S., Miyama, C., Ando, D., Rai, T.,
 "DIPS for Linux and Mac OS X”, in Proceedings

of the International Computer Music Conference
2002.

[4] Matsuda, S., Rai, T., “DIPS: the real-time digital
image processing objects for Max environment”, in
Proceedings of the International Computer Music
Conference 2000.

[5] Woo, M., Neider, J., Davis, T., Shreiner, D.,
OpenGL Architecture Review Board (1999).
OpenGL(R) Programming Guide: The Official
Guide to Learning OpenGL, Version 1.2(3rd ed.).
Addison-Wesley.

[6] OpenGL Architecture Review Board, editor:
Kempf, R., Frazier, C., (1999).
OpenGL(R) Reference Manual: The Official Ref-
erence Document to OpenGL, Version 1.1(2nd ed.).
Addison-Wesley.

