
DIPS : the real-time digital image processing objects
for Max environment

Introduction
The development of the DIPS has been started two years
ago by Shu Matsuda in the Max FTS environment running
on SGI computers. First the object that controlled movie
files was constructed, then video I/O objects were added,
and later each OpenGL function became available as a Max
object. In last winter the DIPS was re-designed in order to
port to jMax environment. Now, the DIPS offers more than
a hundred various objects.

Hardware
Currently DIPS runs on the SGI O2 computer and Octane
computer that contains either the personal video board or
the digital video board. DIPS is designed to get the
maximum execution ability from both hardware. When
DIPS starts up, it detects the hardware configuration and
prepares the hardware-specified DIPS object-set. Thus, a
user can program DIPS objects in the same way for both
hardware, but may notice it when DIPS runs in real-time.  

DIPS objects
DIPS objects, developed as external objects of jMax, were
programmed in C language with OpenGL and the SGI
development software tools including the digital media
library. DIPS projects visual images in the X Window
using GLX. The off-screen pixel buffers are also available
since the window system is supported by GLX-pbuffer
extensions.

Figure 1: DIPS objects in jMax.

DIPS objects can be categorized into the following seven
functions:

1) Video signal I/O
DIPS can handle video signal I/O in real-time. These
objects work a bit differently according to the hardware
circumstance. At the SGI Octane computer with the digital
video board the direct data transfer from the video node to
the texture memory is employed, in order to avoid the

Shu Matsuda
syu@kcm-sd.ac.jp

Takayuki Rai
rai@kcm-sd.ac.jp

Sonology Department, Kunitachi College of Music
5-5-1, Kashiwa-cho,Tachikawa-shi,

Tokyo,190-8520 JAPAN

Abstract
In this paper, we would like to present the set of new Max objects that handle real-time visual image events
in the jMax running environment. This set of objects, named “DIPS”(Digital Image Processing with
Sound), enables the interaction between audio events and visual events in the Max patch, thus strongly
supports the realization of real-time interactive multimedia art.



image data passing the system bus. On the other hand,
DIPS takes the advantage of the Unified Memory
Architecture of SGI O2 computer to make the transfer of
incoming video data as fast as possible.

2) Transformation of incoming video image
Various pixel calculation objects are included in DIPS for
making video effects. It is also possible to combine several
pixel calculations. For example, combining two of DIPS
objects; ‘DPXCopy’ (DPX is a prefix of pixel handling
objects) and ‘DPXBlend’, a simple motion blur effect can
be realized.

3) Video signal analysis
DIPS includes several objects that analyze incoming video
data.  [Figure 2]

For example, edge, area and motion detections are
employed. The results of these analyses are sent to the
outlets of the object, and can be used as controlling
parameters for MIDI events, audio signal events, and video
image transformations.

Figure 2: analyzing area of moving body.

4) Direct movie rendering
The ‘DMVPlay’ object decompresses the movie file on the
hard disk and projects it in the GLX contexts in real-time.
This object can handle a long movie file. Nevertheless,
since it accesses the hard disk, decompresses and projects
at the same time it consumes significant amount of
calculation time. The following DIPS table object solves
this time consumption.

5) DIPS table object
DIPS can create its own frame buffer in the main memory
space. The ‘DIPS_table’ object can contain a two-
dimensional frame or even a sequence of frames, which
can be considered as three-dimensional with the time
domain. It fetches the movie file from the hard disk or
incoming video images from video node.
 [Figure 3]  If the file is compressed, ‘DIPS_table’ decodes
it first and keep uncompressed images in the memory. This
stored images can be used for raster image rendering, for

making delayed effects, moving texture, and so on. Due to
this table object the speed of this process is maximized.

6) OpenGL objects
Most of OpenGL 1.2 functions are introduced in DIPS as
objects.
These objects take completely same arguments as common
OpenGL functions. Some of GLU and GLUT functions are
also available.
Here are some examples:

glScalef(2.0,2.0,2.0);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

float vec[] = {0.5,0.7,1.0,1.0};
glLightfv(GL_LIGHT0,GL_DIFFUSE,vec);

However, OpenGL functions that require frame buffer,
such as ‘glTexImage2D’, must be combined with DIPS
table object.

glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,320,240,0,
GL_RGBA,GL_UNSIGNED_BYTE,(const GLvoid *)data);

Figure 3: video texture mapping on surfaces of cubes.

7) Video device control
SGI O2 and Octane computers have some video hardware
device control applications. All the parameters, including
for video effects such as blend, wipe, keyer, and so on,
which are indicated in the ‘Video Control Panel (vcp)’



application, can be controlled from DIPS objects as well.

DIPS programming in Max patch
DIPS keeps the principal idea of Max application,
“providing simple objects so that users can make anything”.
Almost all the DIPS objects are implemented as bang
driven ‘control objects’ except hash-table definition objects.
Therefore, its timing-control is very flexible. For instance,
it is possible to let the video operating objects run every
33.3 ms while the graphics rendering objects run twice
faster than that speed. All the two dimensional images
handled by DIPS objects can be transported among various
frame buffers available in that hardware or created by
‘DIPS_table’ objects freely by connecting lines and giving
‘bang’ to the DIPS objects.

Figure 4: DIPS programming in jMax patches.

Developing customized DIPS object
As same as programming jMax external object, DIPS gives
programmers the possibility to make custom objects.
Already some of students at our studio have been
successfully developing their own DIPS objects.
For instance, Mitsuyo Hashida is developing video
analyzing objects, Daichi Ando is writing video pixel
calculation objects, and Chikashi Miyama realized objects
for particle rendering and for handling imported three
dimensional model files created in 3D animation software
such as Maya of Alias/Wavefront. [Figure 5]

Figure 5: DIPS handling 3D model files.

Creation of works using DIPS
Composers can use DIPS objects as same as common Max
objects. Thus, DIPS will make it much easier for
composers to realize interaction between visual and audio
events; connecting one or several DIPS objects to any
signal and control objects, or even other DIPS objects in
Max patches. Already several composers including Shu
Matsuda, Shintaro Imai and Takayuki Rai, have presented
interactive multimedia works using DIPS in concerts.
[Figure 6,7]  Most of those works were written for
instrument(s) and a live computer electronic system, which
realizes both real-time audio signal processing and real-
time visual image processing. The video signal from the
camera, that is shooting the performing player on the stage,
is sent to SGI computer, and DIPS objects in Max patches
transform those images. The transformed output images
from the computer are projected on the screen behind the
stage simultaneously.

Figure 6: performance of ‘onyx fluctuation’ by Shu Matsuda.



Figure 7: performance of ‘Deep Blue’ by Shu Matsuda.

The parameters for the image transformation (inputs of
DIPS object) are often controlled by the incoming audio
signal (outputs of Max signal objects) and also Max control
objects. Vis-à-vis is also applied by analyzing incoming
visual signal in various ways.
In addition to these visual/audio transformations DIPS also
presents the opportunity to handle various OpenGL
functions and to import the 3D model objects created by
the computer animation software and control them in Max
patches as mentioned the previous section.

Further development
The number of DIPS objects is kept expanding. More
OpenGL functions will be introduced. And also we are
planning to provide the library, just like Jimmy’s library for
Max/FTS, in order to make DIPS programming more
convenient. In the near future, the DIPS package will
include the help windows, examples and tutorials as well
as the library. Furthermore, we are planning to port the
DIPS to the Max/MSP on Macintosh as well as to the jMax
for Linux.

Conclusion
The DIPS unifies the real-time signal processing technique
and the real-time image processing technique. It also offers
the possibility to control various 3D computer animation
tools in Max patch in real-time. It expands the composers’
creativity into the interactive visual art field as well as
computer music. We are sure this kind of approach will
flourish in the coming century and the DIPS will give
creators one of starting opportunities for new art works.

References
[1]  Dechelle, F., De Cecco, M., Maggi, E., Schnell,N.

“jMax: An Environment for Real Time Musical
Applications”, in Computer Music Journal, 1999,
Beijing, China.

[2]  Dechelle, F.,De Cecco, M.,Maggi, E., Schnell,N.
“jMax recent developments”, in Proceedings of the
International Computer Music Conference 1999,
Beijing, China.

[3]  Dechelle, F.,  Dececco, M.,  Maggi, E.,  Schnell,
N.,  Rovan, B.,  Borghesi, R.  “jMax: A new
JAVA-based editing and control system for real-time
musical application”, in Proceedings of the
International Computer Music Conference 1998, Ann
Arbor, Michigan, USA.

[4]  Dechelle, F.,  Dececco, M.,  Maggi, E.,  Schnell,
N.,  Rovan, B.,  Borghesi, R.  “Latest evolutions
of the jMax real-time engine”, in Proceedings of the
International Computer Music Conference 1998, Ann
Arbor, Michigan, USA.

[5]  Maggi, E.,  Dechelle, F.,  “The evolutions of the
graphic editing environment for the IRCAM musical
workstation”, in Proceedings of the International
Computer Music Conference 1996, HK.

[6]  Lindemann, E., Dechelle, F., Starkier, M., Smith, B.,
“The Architecture of the IRCAM Musical
Workstation.”, in Computer Music Journal, 15(3):41-
50,1991.

[7] “The Lurker’s Guide to Video”, SGI developers
ToolBox,

[8] “Open GL on Silicon Graphics System”, SGI
developers ToolBox,

[9]  Danks, M.,  “The Graphic Environment for Max”, in
Proceedings of the International Computer Music
Conference 1996.

[10] Takashiro, O.,RAI, T.,“The Interactive Multi-media
Computer System using SGI and NeXT/ISPW
computers” , in Proceedings of the International
Computer Music Conference 1996.

[11] Matsuda, S., RAI, T., “A visual-to-sound interactive
computer performance system ‘Edge’”, in
Proceedings of the International Computer Music
Conference 1995.


